
64 The Delphi Magazine Issue 70

CodeSite 2.0 Professional:
For Adults Only...
Reviewed by Dave Jewell

Nowadays, software develop-
ers have access to a huge

arsenal of debugging tools, such as
black-box flight recorders (eg
Mutek’s BugTrapper), profilers,
integrated IDE debuggers and
other utilities for peeking inside
your own (and other people’s)
code.

CodeSite is the brainchild of Ray
Konopka, creator of the respected
Raize Components. You can find
his website at www.raize.com,
where there’s more information on
the Raize family of products,
including the intriguingly named
BabyType, which is designed to
entertain and educate small chil-
dren by turning your PC into a
children’s activity centre.

In the adults-only department,
you’ll find the recently released
CodeSite 2.0 Professional, a debug-
ging tool which is specific to VCL
developers. It supports Delphi
3.01, 4.02 and 5.0 as well as
C++Builder versions 3, 4 and 5.
With the release of CodeSite 2.0,
earlier versions of C++Builder and
Delphi are no longer supported.
The documentation states that
you’ll need up to 11Mb of disk
space: although this seems to be a
very generous guideline, exact
requirements depend upon how
many installed versions of
Delphi/C++Builder you have, and
whether or not you install support
for all of them. Undoubtedly, sup-
port for Delphi 6 will be provided
soon after the new development
system is released.

I reviewed CodeSite 2.0 using
Delphi 5. In this particular case,
the install program automatically
added all the necessary compo-
nents and integrated the CodeSite
2.0 help into Delphi. I was
impressed to see that the installer
auto-detected the presence of
CodeRush and popped up a
message to tell me that a set of

CodeSite keyboard templates had
automatically been integrated into
CodeRush. As the Americans say:
tender!

Actually, it’s no surprise that
CodeSite and CodeRush have a
fairly intimate relationship, since
CodeSite has a recommendation
from Mark Miller (the brains
behind CodeRush) on the Raize
website, and Mark’s name appears
in the credits on the CodeSite About
dialog.

CodeSite 2.0: What’s It For?
So what is it, and what do you do
with it? Figure 2, which I’ve derived
from the CodeSite documentation,
is intended to give you ‘the big pic-
ture’. The basic idea is that your
application, shown by the upper,
light grey, box in the illustration,
generates a set of diagnostic mes-
sages during execution. The other,
darker grey, boxes indicate that
you might potentially be running
multiple instances of your applica-
tion, or even several different
applications, each of which is
CodeSite-enabled. Regardless of
the exact scenario, all these
debugging messages are sent to a
single, centralised CodeSite
dispatcher.

The dispatcher is a redistri-
butable application (only around
1Mb in size) which you can supply
to your customers. This in turn
means that you’ve got a
similar scenario to that

offered by the likes of Mutek’s
BugTrapper, whereby it’s possible
to easily obtain diagnostic info
relating to a computer at a remote
site. As you can see, CodeSite
offers a great deal of flexibility in
where these messages get sent to;
in the simplest case, it might be to
a viewer program or log file on the
same machine as the application
being debugged, but CodeSite also
allows you to set up a TCP or UDP
connection to a remote PC. You
can even dispatch messages to a
web server, which would then
forward them on to another
dispatcher module via TCP.

With CodeSite installed, fire up
the Delphi IDE and you’ll find two
new components on your palette,
TCSObject and TCSGlobalObject.
These correspond to the magenta
coloured objects in the diagram
which really form the heart of the
system. It’s these components
which are responsible for generat-
ing messages and sending them to
the appropriate dispatcher. For an
explanation of the difference
between these two components,
see later.

Both components include a
number of properties, including
DestinationDetails which uses a
very cute-looking property editor
(Figure 3) to configure the
intended destination for all gener-
ated messages. In the simplest

➤ Figure 1: As with
Raize Components,
CodeSite exudes
attention to detail.
The install program
automatically
detects CodeRush
and adds a set of
relevant keyboard
templates to the
IDE.



June 2001 The Delphi Magazine 65

case, you’d click the Viewer tab and
check the Viewer checkbox,
thereby sending all messages to
the local viewer application. More
complex scenarios let you set up a
log file, a TCP or UDP connection,
or whatever. A nice touch here is
that when configuring a TCP or
UDP connection, you can specify
the destination using either a fully
qualified domain name, an IP
address, or the name of the com-
puter. Another nice touch is the
Alias tab which (somewhat like
database aliases) allows you to set
up the details of a specific destina-
tion in the dispatcher’s .INI file,
referring to it by name. Oh yes, and
you’re probably thinking that
those cool-looking tabs are a nice
touch, aren’t you? I thought so too!
Never fear, Ray has promised to
include them in the next version of
Raize Controls...

Incidentally, referring back to
Figure 2, I should stress that the
remote dispatching facilities in
CodeSite are specific to the Profes-
sional version of the product,
which is what I’m reviewing here.

The uppermost
dashed blue box
encompasses the
functionality pro-
vided by the Stan-
dard version, whereas the Pro
product adds the TCP, UDP and
HTTP facilities. I should also point
out that you can set things up so as
to despatch messages to multiple
destinations simultaneously. So,
you can (for example) examine
messages in the viewer application
whilst at the same time copying
everything to a log file.

Making Messages
As you’ll have gathered by now,
CodeSite lays a strong emphasis on

the versatility of its message dis-
patching. But none of that is going
to be of any interest if the product
doesn’t actually deliver a set of
powerful features for generating
messages. There are a whole host
of methods to choose from, some
of which are trivially simple, and
some of which are not. Just to give
you a flavour of how it all works,
let’s suppose you begin by drop-
ping a TCSGlobalObject onto your
form. This will automatically pull
in the CSIntf.PAS file, for which Ray
usefully provides the full source
code. The initialisation clause of
this unit creates a global variable
of class TCodeSite called CodeSite,
and this object is the primary
mechanism for creating messages.

Thus, to indicate that a specific
type of form has been created, you
might do something like this:

procedure TForm1.FormCreate(
Sender: TObject);

begin
CodeSite.SendMsg(
‘Created instance of ‘ +
ClassName);

end;

This will send the message Created
instance of TForm1 to the dis-
patcher, which in turn will send it
to whatever destination you have

➤ Figure 2: The
big picture.
CodeSite can
use TCP, UDP
or HTTP to
communicate
with a remote
dispatcher or
web server.
Note that
only the
functionality
in the upper
blue-dashed
rectangle is
available with
the Standard
edition.

➤ Figure 3: Double-clicking on a
TCSObject or TCSGlobalObject
brings up this property editor
from where you can select one
or more destinations for
diagnostic messages. Here, I'm
sending messages to Gandalf
on the local network.



66 The Delphi Magazine Issue 70

chosen. When you execute your
application, the code inside CSIntf
automatically starts the dispat-
cher application which, in turn,
causes the viewer program to be
invoked. Well, so what, you may
say? This is just a very fancy way to
execute a Writeln statement!
Actually it gets a lot more interest-
ing than that. Here’s another code
fragment to chew on:

procedure TForm1.Button1Click(
Sender: TObject);

begin
CodeSite.SendObject(
‘The form’, Self);

end;

Rather than sending just a string,
this method sends a descriptive
string followed by a list of all the
published properties of the form,
together with the current setting of
each property. This routine isn’t
TForm specific: rather, it uses the
standard Delphi RTTI mechanism
to enumerate all the published
properties of the passed object,
obtaining a string representation
of each property value. The whole

lot appears inside the viewer appli-
cation, formatted very similarly to
the standard Object Inspector
view that we’re accustomed to
seeing. Nested properties are
correctly represented, as are set
properties.

I would have liked to see some
mechanism for suppressing the
display of properties which are
merely set to their default values
(perhaps an additional Boolean
flag in the SendObject method, or a
filter setting in the viewer
application) and it would have
been nice to have some indication
of whether or not a particular
event handler has been assigned,
but nevertheless, SendObject is a
useful diagnostic method.

There are a bunch of basic meth-
ods for sending simple data types
to the dispatcher. Thus we have
SendChar, SendFloat, SendInteger,
SendColor (the viewer displays a
sample of the sent colour) and so
on. Ray has put a lot of thought into
the sort of information that can be
passed to the dispatcher, and so
we also find ourselves with
SendRegistry for dumping out part
of a registry sub-tree, SendStream
for generating the stream repre-
sentation of a component, Send-
StringList, SendTextFile, SendMem-
oryStats (which provides a
number of important metrics relat-
ing to global memory and the local
heap) and even SendBitmap which
sends the bitmap representation of
a TBitmap object to the ultimate
message viewer or logfile. As the

documentation tactfully points
out, sending the contents of a large
bitmap is not recommended
because of the potentially large
amount of data involved.

You’re probably wondering
what the difference is between
TCSGlobalObject and TCSObject? In
essence, TCSGlobalObject is a
wrapper around the previously
mentioned CodeSite global vari-
able, allowing you to configure it at
design-time, especially the all-
important destination informa-
tion. This means that, anywhere in
your application that you execute
some method of CodeSite, the mes-
sage will always be sent to the
destination that you’ve specified
in the DestinationDetailsproperty
of your TCSGlobalObject compo-
nent. You should only ever have
one instance of TCSGlobalObject,
although this isn’t enforced. By
contrast, you can have several
TCSObject components, each of
which might be responsible for
reporting messages of a different
category. You can give each of
them a distinct category colour,
category name, and you can selec-
tively enable or disable each one
as required.

The Dispatcher And Viewer
But before I start rattling on about
category names and category
colours, notes, message types, the
scratch pad, etc, it makes sense to
introduce you to the dispatcher
and viewer applications. Most of
the time, the dispatcher sits in
Explorer’s tray area, minding its
own business. It has popup menu
options for ignoring all messages
and for viewing its own log (not to
be confused with the log file for
messages) which primarily shows
when connections were estab-
lished with a running application,
when the viewer was started and
so on. More interestingly, there’s a
settings dialog from where you can
control which message types and/
or category names are blocked or
sent on to the destination.

CodeSite implements two differ-
ent kinds of message type. Firstly,
there are the general purpose
message types. These message
types can be supplied as an

➤ Figure 4: CodeSite provides
two sets of message types,
general purpose messages,
and bound messages. The
latter are specific to a
particular Inspector in the
viewer. You can also create
your own custom data
messages and inspectors using
plug-ins.



June 2001 The Delphi Magazine 67

argument to many CodeSite
methods which accept a message
type. When you see a message in
the viewer application, it has a
small icon next to it which identi-
fies the message type: see Figure 4,
which shows the general purpose
message types along with their
icons.

In addition, CodeSite also imple-
ments what are called ‘bound’ mes-
sage types: bound in the sense that
the message type is bound to a
specific data inspector in the
viewer application, and is assumed
to be of a very specific type. Exam-
ples of bound message types are
the csmBitmap type, which is associ-
ated with bitmaps, this message
being generated by the previously
mentioned SendBitmap routine.
Similarly, there are message types
which correspond to streams,
string lists, registry messages, and
so on. Within the dispatcher, you
can control the transmission of dif-
ferent message types simply by
selecting or deselecting the appro-
priate icon in the dispatcher
settings dialog.

Message types aside, you can
also categorise messages. Unlike
the message type system, nothing
is predefined, and you can there-
fore add your own category names
as required. You can also associate
a category with a specific colour,
and these colours show up in the
viewer program. Category and
CategoryColor are properties of
TCSObject, so this is where it makes
most sense to have multiple
TCSObject components in your pro-
gram, assigning a different prop-
erty and colour to each. If you were
creating a graphics program, you
might have one for image manipu-
lation, another for drawing, one for
saving/loading preferences, etc.

You can see the viewer program
itself in Figure 5. This screenshot,
taken from the Raize website,
really captures the heart of what
the viewer can do. In the top left
region of the window you’ve got
the main message view area, where
you can step through and examine
individual messages. This can be
configured in a variety of ways:
in the screenshot you can only

see the message itself plus a
timestamp field, but you can also
choose one or more of: display
category, computer name, applica-
tion name, process ID, thread ID
and date. Even if none of these
extra fields are displayed, you can
still see them in the message detail
panel (immediately below the
main message area) for the
currently selected message.

You might potentially be in a
debugging scenario where you
are dealing with multiple pro-
cesses or multiple threads, so the
process ID and thread ID are very
important. It ought to be obvious
here that you could also use
CodeSite to debug the network
interaction between two different
machines, so it is important to
have the computer name field as
well! There are some nice touches,
such as the ability to create new,
named, views which filter the
message display in various ways.
Another nice touch is that the
timestamp field can be configured
to show the time difference from
the previous message, which is



68 The Delphi Magazine Issue 70

handy for debugging time-critical
exchanges.

Below the message detail panel
(most of these individual panels
can be turned on and off, by the
way) you can see the scratch pad
area. As the name suggests, the
scratch pad is used to store
non-persistent, transitory informa-
tion. In addition to all the SendXXX
methods that I’ve discussed so far,
you’ve got another set of methods
whose names are prefixed with
Write. These methods are for send-
ing information to the scratch pad
area. Each of these methods takes,
as a parameter, a special ‘Line ID’
string which appears to the left of
the message itself. Thus, referring
back to Figure 5, you can see two
scratch pad messages with Line
IDs of Mouse Cursor and Counter.
Whenever the viewer receives a
scratch pad message with a Line ID
that it hasn’t seen before, it adds a
new entry to the scratch pad area.
However, when it receives a
message with a previously encoun-
tered Line ID, it removes the old
message with that ID and replaces
it with the new one. At the same

time, the light to the left of the new
message is flashed to indicate that
a change has taken place. From
this, you’ll see that the scratch pad
is ideal for use as a sort of remote
‘watch window’, showing the
changing values of a variable as
you go round a loop, etc.

In the top right-hand area of
Figure 5 (partly obscured by the
drop-down menu) is a picture
inspector which is inspecting a
bitmap sent from the debugged
application. This is because the
currently selected message is a
picture message. CodeSite’s
viewer actually implements no less
than nine built-in inspectors for
bitmaps, streams, memory blocks,
memory status, string lists,
objects, colours, registry data and
custom data. Yes, that’s right,
there are classes and methods in
the CSINTF.PAS unit which enable
you to create your own specialised
messages using a custom format-
ter. You might want to do this to
obtain more info on the internal
state of one of your own custom
components, for example. Over at
the viewer end, it’s possible to

write your own specialised inspec-
tor using the plug-in support
provided by the viewer. As one
would hope, these plug-ins are
implemented as standard Delphi
.BPL packages, and the Profes-
sional version of CodeSite includes
four custom plug-ins (with com-
plete source code) just to get you
started.

Well, I’m running out of space
(and, as usual, time!) but I should
briefly mention some of the other
message calls that are available. In
the bottom right-hand corner of
Figure 5 you will see a small Call
Stack display. One might reason-
ably ask how CodeSite knows what
calling level you’re at, considering
that all it ‘sees’ is the messages it
gets sent? Here again, we’ve got a
whole bunch of messaging meth-
ods that relate to the actual struc-
ture of your application rather
than the current value of a variable
or object. Thus, there are Enter-
Method and ExitMethod calls, which
tell the viewer when a method has
been entered or exited. This auto-
matically enables the Call Stack
window and also causes the viewer
to indent messages on entry to a
method and ‘outdent’ (ugh, hate
that word!) on exit. If you do use
the EnterMethod and ExitMethod
calls, I would advise you to put

ExitMethod inside the finally
clause of a try..finally
block so that even if an excep-
tion occurs, the viewer will
know that the method has
been exited.

Speaking of exceptions,
there’s an ExceptionHandler
method which automatically
causes any unhandled excep-
tions to be routed through to
the current destination. You
can use it as easily as this:

Application.OnException :=
CodeSite.ExceptionHandler;

There are checkpoint mes-
sages for keeping track of
how often a particular line of
code is called, and there
is even a method for automat-
ically clearing the viewer’s
message display. This is
especially useful at the

➤ Figure 5: The highly configurable viewer program itself is where
you'll do most of your detective work. There is also a standalone log
viewer program which is intended specifically for the viewing of the
CodeSite-generated log files (.CSL) on the local machine.



June 2001 The Delphi Magazine 69

beginning of a lengthy chunk of
convoluted code.

Conclusions
As I mentioned at the beginning of
this review, CodeSite will allow you
to gather debugging and diagnos-
tic information from a remote
machine, so it doesn’t make much
sense to remove all your carefully
crafted message-generating calls
immediately before you ship the
final, debugged (or so you think!)
product. Internally, the CSINTF.PAS
unit is organised in such a way that
if it can’t find the dispatcher and
viewer applications, the various
components automatically disable
themselves and the various diag-
nostic calls all become NOPs.
There is very little extra overhead
(not much more than the function
call itself) in this case, so it doesn’t
make sense to ship a special ver-
sion of your code with all the
CodeSite calls taken out.

At the lowest level, the actual
communication between the
debugged application and the dis-
patcher is carried out using our old
friend WM_COPYDATA (see my recent
articles on desktop manipulation
in Beating The System) but the code
has been written in such a way that
you can easily override this and do
something else. For example, both
the TCSGlobalObject and the
TCSObject components have a
single defined event, OnSendMsg,
and if this is assigned to then mes-
sages go to this event-handler
rather than the dispatcher. The
event-handler has the option of
setting a Handled flag for each indi-
vidual messages, and messages
that it chooses not to process are
sent to the dispatcher in the usual
way. Because Ray has made the
source code to CSINTF.PAS avail-
able, the individual developer has
a lot of flexibility in how he/she

sets things up, determines where
to find the dispatcher, and so on.

A debugging product such as
CodeSite stands or falls on its
versatility and ease of use. A less
invasive tool, such as BugTrapper,
is able to work with unmodified
executables, but it has the disad-
vantage of not being able to extract
highly detailed information from a
running program, and there is no
VCL-specific version available at
the time of writing. CodeSite, on
the other hand, requires that you
place diagnostic calls into critical
areas of your code, but is highly
controllable and has full access to
everything that’s going on.
Because of the way in which Ray
Konopka has provided the ability
to send custom information from
the program being debugged, and
custom, plug-in properties in the
viewer, there are virtually no limits
to the sort of information that can
be retrieved, remotely, from an
executing Delphi program, and as
I’ve already mentioned, there’s
nothing to lose (and everything to
gain) by leaving all the diagnostic
methods calls in your shipping
application. CodeSite is a very
flexible, powerful and easy to use
debugging tool, and I can well
understand why Mark Miller
recommends it. Now, Ray, how
about a Kylix version? �

CodeSite 2.0 Professional costs a
very reasonable $299 and the
Standard edition can be had for
$149. These prices are direct from
Raize at www.raize.com. Upgrades
are available for CodeSite 1.0 cus-
tomers. If you must, you can also
get a Raize shirt and baseball cap...

Dave Jewell is the Technical Editor
of The Delphi Magazine, email
him at TechEditor@itecuk.com


	CodeSite 2.0: What’s It For?
	Making Messages
	The Dispatcher And Viewer
	Conclusions

